Implement a Data Analytics Solution with Azure DatabricksThis course explores how to use Databricks and Apache Spark on Azure to take data projects from exploration to production. You'll learn how to ingest, transform, and analyze large-scale datasets with Spark DataFrames, Spark SQL, and PySpark, while also building confidence in managing distributed data processing. Along the way, you'll get hands-on with the Databricks workspace—navigating clusters and creating and optimizing Delta tables. You'll also dive into data engineering practices, including designing ETL pipelines, handling schema evolution, and enforcing data quality. The course then moves into orchestration, showing you how to automate and manage workloads with Lakeflow Jobs and pipelines. To round things out, you'll explore governance and security capabilities such as Unity Catalog and Purview integration, ensuring you can work with data in a secure, well-managed, and production-ready environment.