Learn to build, deploy, and evaluate modern computer vision systems—from classical techniques to cutting-edge deep learning.Applied Computer Vision Essentials is a hands-on course designed for professionals eager to deepen their understanding of modern computer vision techniques. Whether you're transitioning from classical image processing or already working with deep learning models, this course offers a structured path to mastering the tools and concepts that power today's most advanced visual systems. From edge detection and feature extraction to segmentation and multimodal pipelines, learners will explore the full spectrum of computer vision applications through practical labs and real-world scenarios.Participants will gain experience with cutting-edge frameworks like YOLOv9, SAM 2, and DINOv2, while building and deploying models in a GPU-enabled Ubuntu environment. The course emphasizes not just technical proficiency but also ethical considerations, including bias auditing and production monitoring. With a curriculum that blends theory, demos, and capstone projects, learners will leave equipped to tackle challenges in domains ranging from industrial automation to health tech and retail analytics.Ideal for software engineers, data scientists, and MLOps professionals, this course bridges the gap between foundational knowledge and applied expertise. Whether you're optimizing models for edge deployment or integrating vision with language models for safety reporting, Applied Computer Vision Essentials provides the skills and confidence to build robust, scalable solutions.